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Abstract

These are some notes to supplement my lectures for the second half of this

course. Another major resource (from which I am heavily borrowing) is Prof.

Krommes’ extensive notes at

ftp://ftp.pppl.gov/pub/krommes/AST-554/notes.dvi.

1 Simple 1-D Krook Illustration of the Chapman-
Enskog Method for Deriving Transport Coeffi-
cients

(I actually did the next section on Rosenbluth potentials first, but in these notes I’ll
start with this simpler topic first.)

1.1 Almost-trivial case: Krook model conserving only parti-
cles

We will eventually do a more complete treatment of the Braginskii-Chapman-Enskog
equations for a plasma with magnetic fields, but we start with this very simple (or
even trivial) limit to illustrate the essential ideas with a minimum of algebra.

Start with a simple 1-D kinetic equation for a gas (no magnetic or electric field)
with a simple number-conserving Krook operator (also known as a BGK model or
Bhatnagar-Gross-Krook model):

∂f

∂t
+ v

∂f

∂x
= −ν(f − fM

∫

dvf)

[In my senior year in college in 1980, I took an applied math course from Prof.
Krook, who was at that time a friendly elderly man. Which is not to say he wasn’t

friendly as a young man also.] Here fM = exp(−v2/(2v2
t ))/

√

2πv2
t is a stationary

Maxwellian with unit density. This Krook model collision operator causes f to relax
to a stationary Maxwellian of a fixed temperature, i.e., it doesn’t conserve momentum
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or energy. This is actually an appropriate model for a case where f is for some
trace species which is colliding with some background thermal bath of particles. The
momentum lost by these trace particles goes into the much larger bath of background
particles, with which the trace particles eventually come into thermal equilibrium.
We consider this as a “trace species” so that the momentum or energy lost from the
trace species (a.k.a. ‘test-particles”) causes a negligible change in the momentum and
energy of the background bath species.

(?? A somewhat more standard notation would be to absorb the density into the

definition of fM = n exp(−v2/(2v2
t ))/

√

2πv2
t , with n =

∫

dvf . I could rewrite all the
notes to use this form.)

Integrating the kinetic equation over all velocity gives:

∂n

∂t
+
∂(nu)

∂x
= 0

where n =
∫

dvf , and nu =
∫

dvfv. To calculate how the density n evolves in time,
we need to know the flow u. We could operate on the kinetic equation with

∫

dvv and
get an equation for ∂(nu)/∂t, but that would require knowing the

∫

dvfv2 moment.
This gives rise to an infinite chain of moment equations, i.e. to a “closure problem”
which occurs in many contexts.

In the high collisionality limit, the Chapman-Enskog procedure provides a rigorous
asymptotic method for truncating the chain of equations and deriving a closure for
a higher moment in terms of lower moments. To make the ordering expansion we
will be doing a little clearer, introduce the expansion parameter ε into the kinetic
equation as

∂f

∂t
+ v

∂f

∂x
= −ν

ε
(f − fM

∫

dvf) (1)

and expand f = f0 + εf1 + . . .. [The parameter ε is just used to help keep track of the
order of various terms, and in the end we can set ε to 1.] To lowest order as ε → 0,
we have:

0 = −ν
ε
(f0 − fM

∫

dvf)

so f0 = fMn = fM(v)n(x, t). Note that the velocity dependence of f0 is determined,
but the density is an arbitrary function of time and space at this order, and will not be
determined until higher order equations. (Also note that I’ve kept the full f (instead
of expanding it) in the velocity integral in the collision operator, so n contains the
full density. If I had just used f0, then the density would still be arbitrary, but higher
order components might contain density also?? Using the full f as I’ve done here
is a better analog to the particle conserving properties of the full collision operators
involving conservative derivatives. Perhaps I am belaboring this point.)

The next order equation is

∂f0

∂t
+ v

∂f0

∂x
= −νf1
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substituting f0 = FM(v)n and using the fluid equation ∂n/∂t = −∂(nu)/∂x, we get

− fM
∂(nu)

∂x
+ fMv

∂n

∂x
= −νf1 (2)

However,

nu =
∫

dvvf

=
∫

dvv(f0 + εf1 + . . .)

= 0 + ε
∫

dvvf1 + . . .

and so the nu term in Eq. (2) is higher order (i.e., the lowest order equation for the
density is ∂n/∂t = 0 +O(ε). Then Eq. (2) simplifies to lowest order to give

−νf1 = fMv
∂n

∂x

This is sometimes called the correction equation. With a more rigorous integro-
differential collision operator, it is more complex to invert the collision operator to
solve for f1, though with the Krook model used here the inversion is trivial. We can
now solve to find the particle flux

nu =
∫

dvvf1

= −1

ν

∫

dvfMv
2∂n

∂x

= −D∂n
∂x

where the diffusion coefficient

D =
v2

t

ν
= νλ2

mfp

has the proper dimensions of a random-walk diffusion coefficient, and can be clearly
understood from random-walk arguments where the step size is λmfp and the step
time is 1/ν. [The mean free path is defined by λmfp = vt/ν.]

Now that all of the higher moments (in this case just nu) have been completely
specified in terms of lower moments (nu = −D∂n/∂x), we have a closed set of
equations (just a single equation actually) that can be solved to find the evolution of
density over time:

∂n

∂t
= D

∂2n

∂x2

It is important to remember the fundamental ordering assumptions being used
here: time scales slow compared to a collision frequency (∂/∂t)/C � 1 and mean
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free paths short compared to gradient scale lengths (vt∂/∂x)/ν ∼ λmfp/L � 1. In
a strong magnetic field, the restrictions on the gradients perpendicular to the field
can be relaxed somewhat, and only have to long compared to the gyroradius, not the
mean free path. You should read the section on p. 38-39 of the NRL, which is a nice
summary of the assumptions in Braginskii.

1.2 Extension to a momentum-conserving Krook operator

Now extend the procedure of the previous section to include a particle and momentum
conserving Krook operator:

∂f

∂t
+ v

∂f

∂x
= C(f) = −ν

ε
(f − nfM ) (3)

where n(x, t) =
∫

dvvf and fM is now a shifted Maxwellian

fM =
1

√

2πv2
t

e
−

(v−u(x,t))2

2v2
t

and nu =
∫

dvfv so that nfM contains the same amount of momentum and particles
as f . (?? Could add a sketch of f(v) and f0(v), showing that they contain the same
density and average momentum, and that f1(v) = f(v)− f0(v) has no net density or
momentum.) The first two fluid moment equations of Eq. (3) are

∂n

∂t
+
∂(nu)

∂x
= 0

mn
du

dt
= mn

(

∂u

∂t
+ u

∂u

∂x

)

= −∂p
∂x

we keep 2 moment equations (for particle and momentum density) in this section,
while in the previous section we only kept 1 equation because in this section our
collision operator has two conserved quantities while in the previous section it had
only 1. It is not until the pressure moment that this collision operator can start to
have any effect, which is calculated by the “correction equation” for f1 below and
used to provide a closure for p. (This is related to the projection operation that
Krommes talks about: evaluating the collision operator g = Cf leads to a g which
has no density or momentum, i.e., it is a projection onto a a subspace of all possible
g(v). In other problems with similarities to this, some people refer to annihilation
operators.)

As before, expanding f = f0 + εf1, to lowest order we have f = f0 = nfM . To
next order we have

∂f0

∂t
+ v

∂f0

∂x
= −νf1

Use
∂f0

∂t
=

1

n

∂n

∂t
f0 +

(v − u)

v2
t

∂u

∂t
f0
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Substituting the fluid equations for ∂n/∂t and ∂u/∂u, and using the lowest order
expression for the pressure p =

∫

dvfm(v − u)2 =
∫

dvf0m(v − u)2 = nT0 (where
T0 = mv2

t ), after a little bit of algebra one can get a closed “correction equation”
which defines f1 in terms of gradients of n and u. Plugging this expression for f1 in
to find the next order corrections to the pressure, and carrying out a bit of algebra
(I’m getting tired of typesetting the algebra), in particular using the useful i.d. in 1
dimension

〈v2n〉 ≡ 1
√

2πv2
t

∫

dve
− v

2

2v2
t v2n = v2n

t (2n− 1)!!

(where the double factorial n!! = n(n−2)(n−4) · · · (3)(1) for odd n), eventually leads
to the result:

p =
∫

dvm(v − u)2(f0 + εf1) = nT0 − εnm
2v2

t

ν

∂u

∂x

and the final momentum equation is

mn
du

dt
= −T0

∂n

∂x
+

∂

∂x

(

nmη0

∂u

∂x

)

where the viscosity η0 = 2v2
t /ν again makes senses as a random walk diffusion coeffi-

cient. But note that the density equation is still

∂n

∂t
+
∂(nu)

∂x
= 0

i.e., there is no diffusion directly in this equation. There is particle transport, but it
is hidden self-consistently in the higher moment equations.

To study the magnitude of the transport associated with this viscosity, one
can linearize the equations for small amplitude perturbations of the form n =
n0 + n1(t) cos kx, and find that the mode frequency is

ω =
−iη0k

2 ±
√

−ηk2 + 4v2
t k2

2

Thus the density gradients decay away in time, as they would for diffusion, but the
damping is combined with sound wave phenomena.

1.3 Higher-order corrections, “Burnett equations”

**This section is advanced or speculative material that can/should be skipped.**
Here we try to carry out this procedure to second order in ε. We run into troubles,

which might be related to difficulties in the higher order “Burnett equations” that
are sometimes discussed in the literature. The steps I take here I’m guessing are
conceptually similar to the derivation of the Burnett equations, though here we use
a simple Krook collision operator that only conserves particles.
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We go back to Eq. (1), with the simple Krook model that conserves only particles,
and make the substitution f = f0 + εf1 + ε2f2 + . . . (except in the last

∫

dvf ≡ n
term of the Krook collision operator, which we keep to all orders to simplify some
matters). Use the lowest order result that f0 = fM(v)n(x, t), and we are left with

∂(f0 + εf1 + . . .)

∂t
+ v

∂(f0 + εf1 + . . .)

∂x
= −ν(f1 + εf2 + . . .) (4)

Substituting f0 = nfM and using ∂n/∂t = −∂(nu)/∂x = −∂(
∫

dvfv)/∂x, gives
through first order in ε:

− fM
∂

∂x

∫

dvvεf1 + ε
∂f1

∂t
+ v

∂n

∂x
fM + εv

∂f1

∂x
= −ν(f1 + εf2 + . . .) (5)

The terms independent of ε give the results f1 = −(v/ν)FM∂n/∂x and the first order
flux (nu)1 =

∫

dvvf1 = −D∂n/∂x, as we got in the previous section. Substituting
this expression for f1 into the terms in Eq. (5) proportional to ε1 give the result

ν2f2 = vfM
∂2n

∂t∂x
+ (v2 − v2

t )fM
∂2n

∂x2
(6)

Integrating to find the second order flux gives (nu)2 =
∫

dvvf2 = (vt/ν)
2∂2n/∂t∂x,

and using this in the closure for the density equation gives:

∂n

∂t
= D

∂2n

∂x2
− v2

t

ν2

∂

∂t

∂2n

∂x2
. (7)

With a little rearranging to

(

1 +
v2

t

ν2

∂2

∂x2

)

∂n

∂t
= D

∂2n

∂x2
(8)

And we see that this just doesn’t look well behaved. For example, Fourier-transform
in x:

∂nk

∂t
= − Dk2

1− λ2
mfpk

2
nk (9)

There is a singularity at kλmfp = 1, and modes with kλmfp > 1 are actually unstable
(with the growth rate ν at large k). One might try to ad-hoc patch up these equations
by noting that, to the extent that k2λ2

mfp � 1 is the fundamental Chapman-Enskog
ordering assumption, then one can approximate the denominator in this expression
by

∂nk

∂t
= −Dk2(1 + λ2

mfpk
2)nk (10)

which after Fourier transforming back leads to a better behaved hyperdiffusion term:

∂n

∂t
= D

∂2n

∂x2
−Dλ2

mfp

∂4n

∂x4
(11)
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I suppose another way of trying to rationalize this is to say it is equivalent to just
substituting the lowest order result ∂n/∂t = D∂2n/∂x2 into the last term of Eq. (7).
Still, the fact we had to make such modifications seems a bit strange. The papers
mentioned in the following discussion might help clarify the situation.

To summarize and comment on the higher order corrections:
At zeroth order (ignoring the transport coefficients), the fluid equations are the

dissipationless “Euler equations”. The Chapman-Enskog procedure is usually car-
ried out to first order in ν/ω or λmfp/L, yielding the standard viscosities etc. that
are in the Navier-Stokes fluid equations (or in Braginskii’s fluid equations for plas-
mas). Attempts to work to second order in Kn= λmfp/L (the “Knudson number”),
lead to what are usually called the Burnett equations or variations thereof. Some
papers have reported fundamental difficulties with the Burnett equations (such as
violation of the second-law of thermodynamics due to negative dissipation or a heat
flux in an isothermal gas), or problems with the higher-order boundary conditions
required, while other papers have reported improved results with the Burnett equa-
tions in some regimes or ways to fix the Burnett equations (see for example D.W.
Mackowski, et.al., Phys. Fluids 11, 2108 (1999), “Comparison of Burnett and DSMC
predictions of pressure distributions and normal stress in one-dimensional, strongly
nonisothermal gases”, and references therein, or “Numerical Simulation of the flow
around a flying vehicle with high speed at high altitude”, K.L. Guo and G.S. Liaw,
(http://library.redstone.army.mil/hsvsim/papers/hsc013.pdf) and the papers by Bal-
akrishnan and others they cite, and other recent papers).

Recent papers have been written on these topics, motivated in part by the growing
importance of longer mean-free-path effects in various applications (such as micro-
machinery, space shuttle reentry, thermal transport in the vapors used for crystal
growth, etc.).

The Chapman-Enskog procedure is an asymptotic expansion, and, as is well known
in the theory of asymptotics, asymptotic series are not necessarily guaranteed to
converge as more terms are added at a fixed value of the expansion parameter (it is
only guaranteed that a finite number of terms in the expansion will converge to the
right answer in the limit as the expansion parameter is taken to its limit). In fact,
sometimes keeping more higher-order terms causes the approximation to get worse if
the expansion parameter isn’t small enough. (Give a simple example??:)

Instead, it seems to me that an expansion procedure is needed that can robustly in-
terpolate between the short and long mean-free-path limits. The Landau-fluid closure
models that I and others have worked on are designed to handle the long mean-free-
path limit, and extensions to include collisions can then interpolate smoothly between
the two regimes with a robust Padé-type of approximation (see for example Eq. 51
in “Landau fluid models of collisionless magnetohydrodynamics,” P.B. Snyder, G.W.
Hammett, and W. Dorland, Phys. Plasmas 4, 3974 (1997) or sections in Stephen
Smith’s thesis or papers, or “Transport theory in the collisionless limit”, R.D. Hazel-
tine, Phys. Plasmas 5, 3282 (1998)). In k space, the crudest 1-moment Landau-fluid
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model is of the form
∂nk

∂t
= − v2

t k
2

ν + vt|k|
nk

Comparing with Eq. (10), we see that this is better behaved, and provides a smooth
transition between the collision dominated result at small k, and damping at a phase-
mixing rate ∼ vt|k] at high k.

Of course my work has focused on plasmas in the strong magnetic field limit with
a 4 or 6-moment method, while in a neutral gas the formulation would be closer
to Grad’s 13 moment approach (modified to include phase-mixing/Landau-damping
types of terms). (Others who have worked on such Landau fluid closures include
Callen and Chang, Dorland, Beer, Waltz, Smith, Snyder, Mattor and Parker, etc.
and recent papers by Sugama et.al.).

These Landau-fluid approximations work well and are useful for some problems,
but may have inaccuracies for certain types of problems. To be really accurate in a
longish mean-free-path regime, one should either use fully kinetic treatments, such as
particle-in-cell methods or phase-space continuum or “Vlasov” methods.
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2 From the Landau Collision Operator to the
Rosenbluth Potential Form

This mostly followed Krommes’ Chapter 14 Sec. VI.
The Rosenbluth Potential form of the Collision operator has the advantage that

one can use the results of potential theory (from gravitation and electrostatics) to
greatly simplify the integrals if the species being collided with is spherically symmetric
in velocity space. In particular it makes it easy to show that if one is colliding with
a Maxwellian species, the collision operator reduces to the form on p. 36 of the NRL
Plasma Formulary (the section on “Fokker-Planck Equation”). This Maxwellian limit
makes clear the physics of a (directed velocity) slowing down term, a pitch-angle
scattering term, and an energy diffusion term, and is an easier way to prove the
formulas in the NRL for these various rates.

To summarize the resulting formulas:
The Rosenbluth potential form derived in class (which is slightly different from the

form in the Formulary, where the order of one of the derivatives has been interchanged)
can be written as:

(

∂fa

∂t

)

coll

=
∑

b

C(fa, fb) = −
∑

b

∂

∂~v
· Ja/b

(note that the NRL convention used here for the sign of C is the reverse of Krommes’,
and note that where the NRL uses α\β subscripts, I use a/b subscripts, which is faster
to type), where

Ja/b = ν
a/b
0 v3

[

ma

mb

(∇
v
hb)fa −

1

2
(∇

v
∇

v
gb) · ∇v

fa

]

where

ν
a/b
0 =

4πe2ae
2
b log Λab nb

m2
a v

3
,

(as defined in the NRL Plasma Formulary) and

∇2
v
hb = −4πfb, ∇2

v
gb = 2hb,

∫

fb d
3v = 1.

Note that in MKS units, ν
a/b
0 is:

ν
a/b
0 =

e2ae
2
b log Λab nb

4πε20m
2
av

3
,

If fb is spherically symmetric, hb and gb are found by straightforward integration.
For example, if fb is a Maxwellian with temperature Tb then

dhb

dv
= −ψ(xa/b)

v2
= − 1

v2

νa/b
s

(1 +ma/mb)ν
a/b
0
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where xa/b = v2
a/(2Tb/mb). (A minor point: This is the definition of xa/b as given

on p. 31 of the NRL formulary, and the a subscript reminds us which velocity to
use. In our context, or when used in the operator on NRL p. 34 for collisions with
Maxwellian species, va = v, where ~v is the argument of fa.) We can express ψ(x) in
the NRL form or in a form using the standard error function

ψ(x) =
2√
π

∫ x

0
dt t1/2e−t = erf(

√
x)−

√
x

2√
π
e−x

where

erf(u) =
2√
π

∫ u

0
exp(−v2) dv,

As a useful reference (from notes by Karney), we collect here some of the equations
in terms of the error function (instead of the ψ(x) function the NRL uses):

dhb

dv
= − 1

v2

(

erf(u)− u erf ′(u)
)

= − 1

v2

νa/b
s

(1 +ma/mb)ν
a/b
0

dgb

dv
=

1

2

((

2− 1

u2

)

erf(u) +
erf ′(u)

u

)

=
1

2

ν
a/b
⊥

ν
a/b
0

d2gb

dv2
=

1

v

(

erf(u)

u2
− erf ′(u)

u

)

=
1

v

ν
a/b
‖

ν
a/b
0

erf(u) =
2√
π

∫ u

0
exp(−x2) dx, erf ′(u) =

2√
π

exp(−u2)

u = v/
√

2Tb/mb
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